25. Execution Statistics#

This table contains the latest execution statistics.

Document

Modified

Method

Run Time (s)

Status

aiyagari_jax

2024-11-19 23:54

cache

65.44

arellano

2024-11-19 23:55

cache

18.56

autodiff

2024-11-19 23:55

cache

9.77

hopenhayn

2024-11-19 23:55

cache

20.45

ifp_egm

2024-11-19 23:57

cache

117.06

intro

2024-11-19 23:57

cache

1.09

inventory_dynamics

2024-11-19 23:57

cache

7.06

inventory_ssd

2024-11-20 00:30

cache

1999.04

jax_intro

2024-11-20 00:31

cache

29.95

job_search

2024-11-20 00:31

cache

7.46

keras

2024-11-20 00:32

cache

34.33

kesten_processes

2024-11-20 00:32

cache

12.19

lucas_model

2024-11-20 00:32

cache

15.69

markov_asset

2024-11-20 00:32

cache

9.45

mle

2024-11-20 00:33

cache

14.19

newtons_method

2024-11-20 00:35

cache

129.18

opt_invest

2024-11-20 00:35

cache

21.43

opt_savings_1

2024-11-20 00:36

cache

29.44

opt_savings_2

2024-11-20 00:36

cache

19.25

overborrowing

2024-11-20 00:36

cache

24.44

short_path

2024-11-20 00:36

cache

3.06

status

2024-11-20 00:36

cache

2.13

troubleshooting

2024-11-19 23:57

cache

1.09

wealth_dynamics

2024-11-20 00:40

cache

220.72

zreferences

2024-11-19 23:57

cache

1.09

These lectures are built on linux instances through github actions that has access to a gpu. These lectures make use of the nvidia T4 card.

You can check the backend used by JAX using:

import jax
# Check if JAX is using GPU
print(f"JAX backend: {jax.devices()[0].platform}")
JAX backend: gpu

and the hardware we are running on:

!nvidia-smi
/opt/conda/envs/quantecon/lib/python3.12/pty.py:95: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.
  pid, fd = os.forkpty()
Wed Nov 20 00:36:50 2024       
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.54.03              Driver Version: 535.54.03    CUDA Version: 12.6     |
|-----------------------------------------+----------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |
|                                         |                      |               MIG M. |
|=========================================+======================+======================|
|   0  Tesla T4                       On  | 00000001:00:00.0 Off |                    0 |
| N/A   50C    P0              36W /  70W |    107MiB / 15360MiB |      2%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
                                                                                         
+---------------------------------------------------------------------------------------+
| Processes:                                                                            |
|  GPU   GI   CI        PID   Type   Process name                            GPU Memory |
|        ID   ID                                                             Usage      |
|=======================================================================================|
+---------------------------------------------------------------------------------------+